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Studies that estimate deficit probabilities in hydrothermal systems have generally ignored the response
of demand to changing prices, in the belief that such response is largely irrelevant. We show that
ignoring the response of demand to prices can lead to substantial over or under estimation of the
probability of an energy deficit. To make our point we present an estimation of deficit probabilities in
Chile’s Central Interconnected System between 2006 and 2010. This period is characterized by tight
supply, fast consumption growth and rising electricity prices. When the response of demand to rising
prices is acknowledged, forecasted deficit probabilities and marginal costs are shown to be substantially

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Studies that estimate deficit probabilities in hydrothermal
systems typically assume that the demand for electricity is
perfectly inelastic. Yet there is substantial evidence that demand
responds to price.! In this paper we show how to incorporate this
fact when estimating deficit probabilities in contract-based
electricity markets.> We conclude that ignoring the response of
demand to changing prices can lead to substantial under or over
estimation of deficit probabilities.

We make our point by estimating deficits in Chile’s Central
Interconnected System (SIC by its Spanish acronym) over 5 years
starting in 2006. We use a stochastic dynamic programming model
that incorporates hydrological uncertainty and estimates monthly
deficit probabilities and marginal costs. We compare two scenar-

* This paper was financed by AES Gener S.A. Nonetheless, its content is the
exclusive responsibility of the authors and in no way commits AES Gener S.A.
Galetovic gratefully acknowledges the hospitality of the Stanford Center for
International Development and the financial support of Instituto Milenio, Project
P05-004F.
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1 The Lawrence Berkeley National Lab at the University of California undertook
several research projects in recent years studying the response of demand to prices
(see Heffner and Goldman, 2001; Goldman et al., 2002; Siddiqui et al., 2004 and
Reiss and White, 2003)

2 In contract-based electricity markets consumers pay a smoothed energy
price which is set in a long-term contract and does not closely follow variations in
the wholesale price of electricity. Normally, the contract price is indexed to
inflation and fuel prices.
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ios: (a) with a consumption forecast made by the system’s
regulator, the National Energy Commission (NEC), which ignores
the response of demand to changing prices; (b) with an adjusted
NEC forecast which considers that consumers respond gradually to
changing prices. Our results suggest that even a seemingly small
demand elasticity makes a big difference when prices change
substantially. Thus, studies that evaluate supply conditions or
estimate deficit probabilities but ignore the response of consumers
to changing prices can be quite misleading. Because prices tend to
rise when capacity is tight, ignoring the response of consumers to
price can lead to exaggerate the likelihood of a deficit.

Relatively few studies take account of the influence of prices on
demand. One is Kirschen et al. (2000), who assumed that hourly
wholesale prices are directly passed through to consumers and
showed how the elasticity of demand can be taken into
consideration when scheduling generation and setting the hourly
price of electricity. Also, Bompard et al. (2000) showed that in an
open access transmission regime, the independent grid operator
can better manage congestion when loads respond to prices.
Lijesen (2007) estimates the real-time elasticity of demand, finds
that it is quite low and argues that this should stimulate
investment in peak capacity, as scarcity rents should be high. On
the other hand, Aires et al. (2002), in an application to Brazil,
studied how distributors can use pecuniary incentives to reduce
consumption when wholesale spot prices are high. Nevertheless,
they assumed that households reduce peak consumption by 4%,
regardless of the incentive offered by the distribution company.
Last, Albadi and EI-Saadany (2007) revises several experiences of
utilities that have experimented with different demand-response
programs.
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A series of recent studies show that competition is more
intense and electricity prices fall the more elastic is the demand
for electricity. This result appears in Ruibal and Mazumdar’s
(2008) bid-based stochastic model which predicts wholesale
electricity hourly prices in Bompard et al. (2007a,b) study of an
oligopolistic electricity market; in Ahn and Niemeyer’'s (2007)
Cournot analysis of the Korean electricity market; and in Chang’s
(2007) study of the intensity of competition in Singapur’s
electricity market.>

Most papers model the response of consumers to real-time
pricing. Nevertheless, in contract-based markets like Chile and
other Latin American countries consumers do not pay the real-
time wholesale electricity price at which generators exchange
energy, but a smoothed marginal cost forecast, normally indexed
to state variables such as the level of reservoirs, fuel prices and
inflation. It is also the case that households and small commercial
consumers typically pay a regulated tariff that adds non-energy
charges for capacity, transmission and distribution in a single
monomic energy price.* Last, and perhaps more important, the
price that consumers see in their bills varies at most once every
month. Consequently, in this study we show how to adjust a
demand forecast when consumers respond every month to
changes in the price of energy. Because consumers adjust their
consumption only gradually when prices change, we use a partial
adjustment demand model.> Such a model yields the interesting
implication that the elasticity of demand grows over time
converging only gradually to its long-run level. Also, because the
price that consumer pay varies once a month, we use monthly
elasticities.

The rest of this paper is organized as follows. Section 2
describes the Chilean electricity market and shows how electricity
prices are determined in Chile. Section 3 describes how to model
the response of demand to changing prices. Section 4 describes
the methodology. Section 5 presents our estimations of shortage
probabilities in Chile. Section 6 concludes.

2. The Chilean electricity market
2.1. Market overview

The Chilean electricity market was radically restructured
during the 1980s as part of sweeping market-oriented reforms
that were massively introduced in Chile during the 1970s and
1980s. The initial step was the 1982 electricity law (see Ministry
of Mining, 1982). As Bernstein (1988) shows, it functionally
separated the provision of electricity in three distinct segments,
generation, transmission and distribution. The law also intro-
duced marginal cost dispatch, benchmark regulation in distribu-
tion (see Arellano (2008); Bernstein (1988); Moya (2002); Rudnick
(1994); Rudnick and Donoso (2000); Rudnick and Raineri (1997))
and long-term contracts between generators and distributors at
regulated and stabilized energy prices. This was followed in the
late 1980s with a massive privatization of state-owned electricity
utilities.

This regulatory framework has remained essentially un-
changed since 1982, with specific changes introduced during the
last couple of years to improve the regulation of transmission,
strengthen conflict resolution mechanisms and substitute

3 See also Lee and Ahn’s (2006) analysis of electricity restructuring in Korea.

4 The monomic energy price is the average cost of 1kWh including the
capacity payment. It is equal to (e - pe+7 - pp)/e, where pe is the price of energy, p, is
the price of power, e is the total amount of energy consumed, and 7 is the load
during the peak hour of the year.

5 The seminal study is Fisher and Kaysen (1962).

price regulation of consumer energy prices for competitive
auctions.

Generators and consumers: The Chilean electricity market is in
essence a financial contract-based market where generators sign
long-term power and energy supply contracts. These contracts
specify the volume and price for the sale of energy and power.

The 1982 law established two types of consumers. Free or
unregulated consumers are those who demand more than 2 MW
and they directly bargain over supply conditions and prices with
generators.® Regulated consumers, on the other hand, are those
who demand 2 MW or less.” They pay regulated power and energy
prices set by NEC every 6 months in April and October and are
supplied by distributors, who must sign long-term supply
contracts with generators.®

Cost-based merit order dispatch and short-term marginal cost: In
order to minimize the system’s operation cost, generators must
follow the instructions of the Economic Load Dispatch Center
(CDEC by its Spanish acronym). CDEC centrally dispatches plants
according to strict merit order to meet consumption at every
moment, constrained to maintain the safety and reliability of
service. The system’s marginal cost is the running cost of the most
expensive unit required to meet system demand at a given time
and changes every half hour. Dispatch is completely independent
of contractual obligations to supply energy. For this reason, each
half hour a given generator is either a net supplier to the system or
a net buyer. Net buyers pay net suppliers the system’s marginal
cost.

Capacity payments: Each generation unit is paid a monthly
capacity payment based on their annual availability, whether they
get dispatched or not.® The price of capacity, the so-called power
node price, equals the capital cost of the peaking technology, a
diesel turbine (see Appendix).

Transmission charges: Every 4 years: NEC fixes transmission
charges for the use of the main high-voltage grid. These charges
are assigned among generators and consumers according with
their expected “use” of the grid; use is calculated with GGDF and
GLDF factors. In case of regulated consumers, this cost is passed
on as a postage-stamp charge.'°

Value added of distribution (VAD): Each distribution company is
granted an exclusive concession in a given geographical area. In
exchange, it must supply electricity to all consumers. Every 4
years NEC calculates VAD following the efficient-firm standard
coupled with yardstick competition (see Rudnick and Donoso
(2000)). VAD is defined as the efficient cost of distributing 1 KW of
peak power under maximum load conditions in the distribution
system.!! Distributors sign long-term contracts with generators,
buy energy and power at the regulated node prices (see next
section) and pass these directly to consumers.

2.2. Prices paid by consumers

Unregulated consumers (i.e., those who demand more than
2MW), buy their electricity directly from generators and pay
unregulated market prices for energy (p¢') and power (pp'). They

8 Normally the contract term is 10 or more years. Energy and power prices are
fixed in real terms and indexed to price indexes that track costs such as the Chilean
and USA WPIs, fuel prices and the peso-dollar exchange rate.

7 Consumers who demand between 0.5 and 2 MW can choose every four years
between the regulated and free regime.

8 After the passage of the so-called Ley Corta 2 (LC-2) in May 2005 (see
Ministry of Economics, 2005), these contracts have a maximum term of 15 years
and will be allocated in auctions to the lowest energy price bid.

9 About capacity payments (see Oren, 2000 and Barrera and Crespo, 2003).

10 See Galetovic and Mufioz (2006).

1 See Rudnick and Raineri (1997).
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Table 1
The elasticity of the demand for energy

Country Study

One-year elasticity Long-run elasticity

United States Anderson (1973)

Mexico Berndt and Samaniego (1984)
United States Chang and Hsing (1991)
Greece Donatos and Mergos (1991)

United States Fisher and Kaysen (1962)
United States Garcia-Cerrutti (2000)

UK Houthakker (1962)

United States Houthakker and Taylor (1970)
United States Houthakker et al. (1973)
United States Maddala et al. (1997)

United States Mount et al. (1973)

Paraguay Westley (1984)
United States Westley (1988)
Costa Rica Westley (1989)

= -1.12
= —0.47
—0.36 to —0,13 -1.39
—0.21 —0.58
—0.15 -
-0.13 —0.17
—0.89

—0.13 —1.89
-0.9 -1.02
—0.21 to —-0.15 —1.03 to —0.22
-0.14 -1.2
= —0.56
= —0.99
= —0.45

must also pay a per-kWh transmission charge 7. Thus, if 1. are
energy losses and A, are power losses, the total bill paid by
consumer i is

Ei - (Aepe' +T1) + Di - Appy's

where E; is i’s energy consumption and D; is i’s load at the system’s
peak. Unregulated customers are typically connected to the
transmission grid, and thus pay no distribution charge.

On the other hand, regulated consumers (i.e., those who
demand 2 MW or less), may choose among any of the different
regulated tariff options within their corresponding voltage level.
The basic split is between high-voltage tariffs (AT by its Spanish
acronym), and low-voltage tariffs (BT by its Spanish acronym).

Regulated consumers pay the regulated node price for energy
(p¢) and power (pp). In addition, these consumers are served by a
distributor, and must pay their share of the value added of
distribution. Last, they must also pay a per-kWh transmission
charge, 7. Hence, their total bill is

Ei . (/’{epz + 'Ei) =+ Di . ;uppg =+ VAD,

Now when the price system was designed in 1982, hourly
metering equipment was very expensive. Thus it was decided that
small residential and commercial consumers would pay an
energy-only price. To transform the per-KW power charge into
an energy charge, a load-coincidence factor y is estimated and
used. Similarly, to transform the per-KW VAD charge a so-called
“responsibility” factor ¢ is used. Thus the total bill of a consumer
with an energy-only meter is

E; - (JeD} + W/ppp + T+ 0 - VAD;).

Regulated energy and power node prices are set in April and
October by NEC. The power node price pj is equal to the
annualized cost of a diesel peak turbine. The energy node price
pe is set by comparing the expected system marginal cost over the
next 4 years with the average electricity price paid by unregulated
consumers. The appendix explains in detail how this comparison
is made.

3. The price elasticity of the demand for energy

In most cases the quantity demanded of a given good decreases
as its price increases. Economists often linearize demand around
a given point and summarize this response to price with the
so-called elasticity of demand, defined as

_ AQ/QO_
Ap/pyg

The price elasticity of demand indicates the percentage change
of the quantity demanded for a given percentage change in price.
Because demand curves are downward sloping, this pure number
is less than zero, unless demand is insensitive to price changes. In
the remainder of this paper, it will be assumed that all prices and
quantities have been normalized around a given equilibrium point
(4o, Po)-

Most if not all studies of the demand for electricity find that it
is sensitive to price changes. Many also find that consumption
responds gradually to price changes, presumably because when
the price of electricity permanently changes, consumers do not
change their appliances immediately but spread the adjustment
over time.

Table 1 summarizes the results of a sample of studies that
estimate the price elasticity of residential demand. It can be seen
that long-run elasticities (elasticities that summarize the change
in the quantity demanded after a long time has elapsed) range
from —0.17 to —1.89. Short-run, 1-year elasticities go from —0.13
to —0.89.

Now in a study that estimates supply conditions and monthly
deficit probabilities over the next couple of years one would like
to explicitly account for the fact that consumption adjusts slowly
to price changes. Moreover, one would also like to consider that
this adjustment takes place month by month. The study by
Benavente et al. (2005), which estimated the elasticity of demand
for residential electricity in Chile, allows us to do this because it
estimated a monthly partial adjustment demand model. They
found that the price elasticity of demand is —0.055 after 1 month
and —0.39 in the long run. That is, if tariffs are permanently raised
by 10% in January, consumption falls by 0.55% in February and
3.9% in the long run after all adjustments have been made.

We now discuss how such a model can be used to adjust a
demand forecast. Benavente et al. (2005) estimate that the
monthly residential demand for energy is

InE; = InA; + 0.33InE; ; +0.53InE; , — 0.0551np,_, (1)

where E is the quantity of energy consumed, p is the price of
energy and all other factors that affect demand have been
collapsed into the term A, which will be assumed exogenous.

Function (1) indicates that the quantity of energy demanded
during month t depends on energy consumption during the two
preceding months, t—1 and t—2; and on the price of energy during
month t—1.2 The short-run, 1-month price elasticity of demand is
—0.055.

12 Consumers see the price of energy once a month when they receive their
monthly bill, which reports the price during the previous month.
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To see how the partial adjustment of demand works, assume
that consumers are at their long-run optimum consuming E = 100
when the price of energy is p and that A is constant. If the price of
energy rises a little from p to p+Ap in month 0, the quantity of
energy consumed during the following month will be

InE; =InA+0.331In100 + 0.531In 100 — 0.055 In(p + Ap).
Next month the quantity consumed falls a little more to
InE; = InA + 0.331InE; +0.531n 100 — 0.055 In(p + Ap),
and so on. Thus
AE(1,p + Ap) = E; — 100
is the percentage change in consumption during the first month,
AE2,p + Ap) = E, — 100

is the total percentage change in consumption 2 months after the
price change, and

AE(n,p + Ap) = E, — 100

is the percentage fall in consumption after n months. Conse-
quently,

AE(n,p + Ap)
Ap/p

is the price elasticity of demand n months after the price change
and it can be shown that in this case

lim AE(n,p + Ap) ~

0.39,
n—co Ap/p

which is the long-run price elasticity.

One might think that elasticities of the magnitude estimated
by Benavente et al. (2005) are “small” in that they are
considerably less than 1 in absolute value. Hence, a rather “large”
price increase of 10% changes consumption only 0.55% during the
first month, 2.7% after 1 year and 3.9% in the long run.
Nevertheless, we will see that modest changes in consumption
substantially affect deficit probabilities and generation costs.
Consequently, such elasticities are not “small” for the problem at
hand.

4. How to adjust a consumption forecast

We can now discuss how to use the demand function (1) to
adjust a consumption forecast (Eq, Ej,... E;) which ignores the
effect of price on demand.

Note that given the known consumptions E_; and E_;, the
forecast Eq can be assumed to be coming from the following
evaluation of the demand function:

InEy =1InAp +0.33InE , +0.53InE_; — 0,0551np,,

where pg is the actual price in month t = 0. Because E_;, E_, and
po are known, one can recover Ao, implicit in the forecast E,.
Similarly, because the forecast of consumption ignores the effect
of price on demand, one can assume that E; satisfies

InE; =InA; +0.33InE_ 4 + 0.53InEy — 0,055 Inp,

and recover A;. Following a similar procedure, one can obtain the
whole sequence (Ag, Ay,..., Ay). Now given an exogenous price
forecast (pi, p2,... pn), it is straightforward to obtain the adjusted

forecast (Eo, Ey,... En), which satisfies

InE; =InA; +0.33InE_; +0.53InEy — 0,055Inp,
InE, =InA; +0.33InEy + 0.53InE; — 0,055 In p;

InEy =InA, +0331InE, 5 +0.53InE,_; — 0,055Inp,.

The adjusted forecast (Eg, Es, ..., E,) can now be used to estimate
deficit probabilities.

Note that in principle one should also consider that the change
in consumption wrought by the change in price could lead to
further adjustments in price, as energy suppliers move along an
upward-sloping supply curve. Thus, using the adjusted demand
forecast (Eo, E,..., E,) one would have to recalculate equilibrium
prices; these would then feed back into the consumption forecast
and equilibrium prices are calculated again; and so on until the
process converges.

In the particular case of Chile, determining the energy price in
principle involves making a marginal cost forecast obtained from
a hydrothermal dispatch model. Nevertheless, in our case one can
safely ignore these feedback effects, as between 2006 and 2011
prices will evolve largely exogenously determined by the ceiling of
a price band (see Appendix)

5. Dispatch model and results

We now present the results of a simulation that estimated
monthly deficit probabilities over 2006-2011 in Chile’s Central
Interconnected System. The baseline case uses the consumption
forecast, fuel prices and expansion plan used by the NEC when it
fixed the node price in April 2006 (see National Energy
Commission, 2006). We then adjust the consumption forecast
following the procedure that we explained in the previous section,
and recalculate deficit probabilities. We used the stochastic
dynamic programming model Omsic, which was used until
recently to dispatch plants in Chile’s SIC. In what follows we
briefly describe this model.

5.1. The dispatch model

The Chilean system is coordinated to minimize the expected
cost of supply and outage cost. The CDEC centrally dispatches
power plants in strict merit order, ranking them from lowest to
highest operating costs until the amount of power demanded at

System’s

load
Spot oa
price

Merit
order

Run-of-river Thermal

i Reservoir
i contribution

Energy

Fig. 1. Dispatch by merit order.
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each point in time is covered. Thus, run-of-river hydroelectric
plants are dispatched first. If the amount produced by run-of-river
plants is insufficient to serve demand, thermal and reservoir
hydro plants are activated in increasing order of operating cost.
Last, the opportunity cost of reservoir water is calculated with a
stochastic dynamic programming model at each instant and
thermal plants are dispatched accordingly.

Regulation in Chile stipulates that CDEC orders are compulsory
and independent of each firm’s energy and power supply contracts.
As a result, transfers are often made between generators to enable
them to meet their commercial commitments, which are valued at
the instantaneous nodal marginal cost. The spot price calculated
hourly. The separation between dispatch and contracts allows the
system to minimize short-run total production cost.

Dispatch rules are illustrated by Fig. 1. Run-of-river and
thermal plants are ordered according to their variable cost of
operation. It can be seen that the amount of electricity generated
by thermal power plants at each point in time depends on system
load, the availability of run-of-river hydroelectric generation, and
the amount generated from water stored in reservoirs. The
amount generated with reservoir water, in turn, is determined
by equating the option value of water stored in reservoirs with the
current cost of generation, which equals the variable cost of the
most expensive thermal plant running. If that is so, reservoir
water will exactly cover the difference between system load and
thermal plus run-of-river generation.

Until recently, the system was operated with the dynamic
programming model Omsic. This is the model used to perform our

Forecasted energy prices
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Fig. 2. Forecasted energy prices.
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simulations. In Appendix B we formally describe the model, the
optimization and the simulations.

5.2. Results

Prices: Fig. 2 shows prices paid by consumers since 2004 and
forecasted until 2011. The black line shows the monomic BT1
tariff, which is paid, as said before, by small residential and
commercial consumers. The grey line shows the energy node
price, which is paid by regulated consumers (mainly commercial
and small industrial customers) and is the basis for many
contracts with unregulated consumers. As said before, between
2006 and 2011 the energy node price, is a function of the
monomic market price, which will evolve exogenously. For this
reason, it will not be affected by the new consumption forecast.

As can be seen from Fig. 2, the price of energy has been rising
since April 2004. Between March 2004 and April 2006, the BT1

Table 2
Forecasted consumption (NEC and adjusted)

NEC'? Adjusted?

(1) Consumption (2) Rate of (3) Consumption (4) Rate of

(GWh) increase (%) (GWh) increase (%)
2006 38.412 37.774
2007 41.443 7.9 38.823 2.7
2008 44.800 8.1 40915 5.4
2009 48.250 7.7 44.075 7.7
2010 51.482 6.7 47.906 8.7

Sources: CNE (2006) and authors’ calculations.

Notes: (1) Losses are assumed to be equal to 4.1% of power transmitted, the average
recorded between 1996 and 2005. (2) NEC estimated consumption in 2006 at
38,480 GWh. We corrected this estimate with information on actual sales during
the first quarter of 2006. (3) This is NEC's forecast adjusted for the fall in
consumption wrought by higher energy prices, assuming short-and long-run
elasticities as estimated by Benavente et al. (2005).

565

tariff increased by 16%, while the energy price paid by regulated
commercial and industrial consumers rose by 47%. This had a
significant impact on demand growth: while until 2004 con-
sumption had normally grown one or two points faster than the
rate of growth of GDP, in 2005 it grew only 4.5%, while GDP grew
by 6.2%. Note that energy prices are expected to level off from
2007 onwards.

Quantities: In April 2006 NEC forecasted that energy consump-
tion would grow at about 7% per year. Fig. 3 shows the monthly
baseline consumption forecast made by NEC (grey line) and the
adjusted forecast (black line). Both coincide in April 2006, which
is the starting date.

Table 2 compares both forecasts. NEC estimated that con-
sumption would grow by 7.9% in 2007 and 8.1% in 2008; our
adjusted forecast gives much lower rates of growth: 2.7% in 2007
and 5.4% in 2008. Graphically, Fig. 3 shows the consequence of
this difference: from 2008 onwards, the level of consumption is
about 10% lower—some 300GWh each month, or roughly the
same as having an additional power plant available in the system.

Column 4 in Table 2 also shows that rates of growth are very
similar in 2009 (both 7.7%) and 2010 (NEC: 6.7%; adjusted: 8.7%).
The reason is that by then energy prices level off and the partial
adjustment of consumption to higher prices is mostly completed.
But note that, as Fig. 3 shows, the level of energy consumption is
permanently lower.

The probability of a deficit: Fig. 4 compares monthly deficit
probabilities with NEC's forecast (grey line) with deficit prob-
abilities calculated with the adjusted forecast (black line). If the
probability of a deficit in a given month is similar in both cases,
then the figure only shows the black line.

Slower growth significantly affects the probability of a deficit.
NEC’s deficit probabilities are in general higher and during many
months climb above 6% (that is, the simulation shows a deficit 6%
of the time). By contrast, the simulation with the adjusted forecast
indicates that deficit probabilities are most of the time lower than
3%. This is mainly due to the 300 GWh per month reduction in

Monthly deficit probabilities
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Table 3
Average system’s marginal cost (Quillota bus, 220kV)

(1) Base case (2) Adjusted demand (3) Difference

cents/kWh cents/kWh % =(2)/(3) (%)
2006 9.4 7.7 22
2007 1.4 8.1 41
2008 10.5 7.8 35
2009 11 8 38
2010 8.4 7 20
Average 10.2 7.7 32

Table 4
NEC and adjusted demand compared: additional thermal energy and generation
cost

Additional thermal energy Additional generation cost

GWh % Million $ %
2006 1.079 9 117 28
2007 2.857 19 300 53
2008 4.339 26 388 52
2009 4183 21 389 43
2010 3.544 15 273 30
Total 16.002 18 1.466 41

consumption which, as said before, is equivalent to an additional
power plant in the system. The expected deficit is about six times
larger when the effect of rising prices is ignored (258 vs. 34 GWh).
Marginal costs and the cost of system supply: Table 3 compares
the system’s marginal cost in both cases.’*> The average marginal
cost is equal to 10.2 cents/kWh with NEC's forecast, 32% higher
than the 7.7 cents/kWh average with the adjusted forecast.
Table 4 compares thermal energy and operating costs in both
cases. With NEC’s forecast thermal generation is 18% higher, and
operating costs are 41% higher, a substantial amount.'*

6. Conclusions

We have shown that ignoring the effect of price changes on the
demand for energy can lead to substantial over or understate-
ments of deficit probabilities, marginal costs and operating costs.
In the case of Chile’s SIC, an hydrothermal system, between 2006
and 2011 monthly deficit probabilities drop sharply from an
annual average of 2.3% to just 0.4% once the effect of rising prices
on demand is accounted for. Similarly, the size of the expected
deficit falls from 258 GWh to just 34 GWh; the system’s average
marginal cost from 10.2 cents/kWh, to 7.7 cents/kWh (33%) and
operating costs also fall by roughly 41%.

Appendix A. : Setting the regulated node price

In Chile distribution firms can buy energy and power from
generators at regulated prices—the so-called energy and power
node prices. Node prices are then passed through to consumers.
NEC calculates both prices every 6 months in April and October.

13 Marginal costs are computed at Quillota, one of SIC’s main buses.
14 Operating costs include the cost of outages when in deficit.

Node prices are fixed in four steps. First, the so-called basic
energy price and power node price are calculated. Second, these
prices are combined into a monomic energy equivalent, to be
compared with the monomic average price paid by unregulated
customers according to actual contracts. Third, the monomic node
price is calculated. It must fall within a band centered around the
monomic market price. Last, the energy node price is obtained
and fixed as the tariff paid by consumers. We revise each step in
turn.

Step 1: Let E(t) be the energy forecasted to be consumed at
time t, mc(E(t);0) be the system’s marginal cost at time t if the
amount of energy produced is E(t) and rainfall is 0; and let r = 10%
be the real discount rate. Then the basic price of energy, p&, is
given by

4 4
pl- /O E(te " dt = E, {/0 mc(E(t); 0) - E(He " dt |, (A1)

where Ey is the expectation operator. Thus, the so-called basic
price of energy is the average price that yields exactly the same
revenue in present value as generators would expect to obtain if
they would sell their energy at the system’s marginal cost over the
next 48 months (4 years).

In practice mc(E(t);0) is calculated using a hydrothermal
dispatch model based on stochastic dual dynamic programming
(SDDP) techniques.'® The optimization is based on a forecast for
energy and peak load consumption over the next 10 years. Given
this consumption forecast, reservoir use is set to minimize the
expected cost of supplying required energy and peak power. The
givens of the problem are: the initial reservoir level; existing
power plants; the optimal entry of power plants and forecasted
trunk lines over the next 10 years; forecasted fuel costs; and the
value of lost load (VOLL). Hydrological uncertainty, @, is modeled
using historical statistics.

Now it follows from (A1) that

4
PP=A-E {/ mc(t; H)E(r)e‘”dr}
0

with

4 -1
_ —rt
A= {/0 E(te clt]

The power node price equals the cost of investing in a diesel-
fired turbine meant to run at the system’s peak hour. This cost
equals the sum of I, the cost of the turbine, and I,, the cost of the
transmission line needed to connect it to the high-voltage grid.
Both are brought to a yearly equivalent assuming an 18-year
recovery period, a system reserve margin « and a 10% real
discount rate. Thus

1
pp =1 +0) 5l +10)

with

18 -1
R= {/ et dt:|
0

Step 2: The basic monomic energy-equivalent is calculated as
11
b _ b n . -

where ¢f is the system’s load factor (assumed to be 74.4% in recent
tariff reviews) and h = 8760/12 is the average number of hours
per month.

15 See Pereira and Pinto (1991) and Power System Research Institute (2001).
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Step 3: Next the basic monomic energy price is compared with
the price band. Let

p’—p"
p-m
the percentage difference between the market monomic price

and the basic monomic price. Then, the monomic node price is

determined by the following price band:

P x (1+ &) if 4>0.05
P = P if —0.05<4<0.05.
P"x(1-&if A< —0.05

A=

Thus, if p° falls within a +5% band centered around
the observed monomic unregulated price, p™, then it is also the
monomic node price. Nevertheless, assume p” deviates by more
than 5% from p". Then, the monomic node price is equal to either
the band’s ceiling p™ x (1+&) or floor p™ x (1—&). The size of the
adjustment factor ¢, in turn, depends on the size of 4 according to:

0.05 if 0.05<]4|/<0.30
=< 04x|4]-0.02if 0.30<|4|<0.80.
0.30 if 0.80<4|

That is, the adjustment factor increases stepwise with 4.
Step 4: The energy node price is, finally,
E.-p"—P.p"
Pe=—pF "
Regulated node prices are indexed monthly to track fuel prices,
the level of reservoirs and local inflation. Nevertheless, since

October 2006 the energy price is exclusively indexed to the
average market price of the last few months.

Appendix B. A brief introduction to the Omsic model

Introduction: Dispatch in Chile’s Central Interconnected System
(SIC by its Spanish acronym) is run with a dynamic programming
model. The center of this optimization is the Laja reservoir
(Laja lake). When full, it holds enough water to generate about
7000 GWh, around one-sixth of annual consumption. Because the
installed capacity of plant that runs with Laja water is 2500 GWh/
year, energy can be stored for several years. A stochastic dynamic
programming model operated by CDEC governs the hourly rate of
use of Laja water. The model trades off the benefit of using water
today and displace thermal generation, against the cost of not
having water in the future and thus having to use thermal
generation or ration consumers. The model’s state variable is the
current level of the Laja reservoir. The probability distribution of
future hydrologies is modeled with 40 years of monthly past
hydrologies (hence, there are 40 January hydrologies, 40 February
hydrologies and so on, and 40 x 12 = 4800 monthly hydrologies in
total). Each monthly hydrology is assumed to be an equally likely,
statistically independent random draw. The output of the model
indicates the amount of Laja water that should be used during
each month and the shadow price of the remaining water. This
shadow price is the system’s marginal cost or wholesale spot
price. Under normal conditions, the opportunity cost of water
equals the operating cost of the most expensive thermal plant
dispatched. If the model optimally predicts a shortage, the
opportunity cost of water equals the outage cost.

In this appendix we describe the dynamic optimization and the
simulation performed by the Omsic model. Omsic optimizes the
use of reservoir water (optimization stage), and then simulates
plant dispatch under different hydrologies (simulation stage). We
describe each stage in turn.

Power
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/ load (L)
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Fig. 5. Allocation of run-of-river and small reservoir water.

Stage 1: Optimization. The output of the optimization stage is a
function that maps the state variable, the amount of water in the
Laja reservoir as measured by its level, ¢, to the monthly optimal
use of water for each of the 40 hydrologies during each of the T
months of the planning horizon (in this case, T = 120).!® To run
this optimization one needs a projection of each month’s energy
consumption; the entry dates of new generating plant; fuel prices;
and the energy provided by each hydro plant under each
hydrology each month. The model also divides monthly energy
consumption in five demand blocks which follow the shape of the
daily load curve. Last, the use of the water of lake Laja is
optimized. We now describe this optimization

Step 1: Allocation of run-of-river and non-Laja reservoir energy.

The first step of the optimization stage is the allocation of run-
of-river and non-Laja reservoir energy among the five demand
blocks (see Fig. 5). On the one hand, run-of-river energy is
assumed to spread evenly among the five blocks. On the other
hand, water from four small reservoirs (Colb(n, Cipreses,
Canutillar and Rapel) is allocated to the peak block, and if these
plants run at capacity during the peak block, the remaining water
is allocated to the next block. The principle behind the allocation
of small reservoir water is that one should strive to equalize the
marginal cost of energy should across blocks, and this calls for
using water from small reservoirs during peak hours.

Note that the allocation depicted in Fig. 5 is done 40 times for
each month of the 10-year optimization horizon—that is, there
are 40 x 120 = 4800 allocations.

Step 2: The optimal use of water in the Laja lake.

Whatever load remains unserved after run-of-river and small
reservoir energy is allocated (the white area in Fig. 5, which we
will call residual load) it must be supplied with energy generated
in thermal plants or hydro plants that run with water of the Laja
lake. A simple relation links thermal generation with the amount
of water generated with water in the Laja lake: once the optimal
flow of water extracted from the Laja lake is determined, thermal
dispatch is obtained by following the merit order. To understand
how the optimal flow of water extracted from the Laja lake is
calculated, it is convenient to note that the optimization is based
in an economic principle which is implemented with a specific
computation method.

The principle has already been described: water in the Laja
lake should be used until its marginal value today equals its
marginal value tomorrow. It can be illustrated with a simple

16 The level of the Laja lake is measured in meters over sea level (m.o.s.l.).
When empty, the lake’s level is 1310m.o.s.l. When full, the lake’s level is
1368 m.o.s.l.
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Fig. 6. The option value of water in the Laja reservoir.

graph, Fig. 6. On the one hand, the current-cost curve, c, depicts
the current marginal operation cost. This curve is downward
sloping because water displaces thermal generation which is
dispatched in strict merit order. Its position depends on the size of
the residual load which, in turn depends on the hydrology h. On
the other hand, the option value of holding one additional kWh in
lake Laja at the end of the current period, which we denote by 4, is
an increasing function of the water currently used, call it e—if
more water is used today, less water will be available in the future
and more thermal generation will be needed.!” / is a function only
of the state variable ¢. But because the level at the end of the
period depends not only on water use, but also on the current
hydrology and the initial level of the lake, the position of this
curve depends on the hydrology h and the initial level of the lake,
t_1. The optimal flow of water, call it e* is found at the
intersection of both curves where the option value of water A
equals the current cost.

The method used to implement this principle is to solve a
dynamic programming problem whose output is a set of matrices
that indicate how much water is to be used each month for each
level of the Laja lake and each hydrology. If the number of possible
levels is ¢, then the matrix is of order ¢ x 40, for there are 40
hydrologies each month. Because there are 120 months, it follows
that there are 120 such matrices. Each component in a given
matrix is a quantity of energy generated with the water of the Laja
lake given ¢ and h.

The current-cost curve is easy to obtain. For a given residual
load L (which in turn depends on the hydrology and the total load
curve; see Fig. 6), a function relates the amount of Laja water and
the operation cost of the most expensive thermal plant dis-
patched. Hence, a function also relates the current cost with the
amount of energy generated with water in the Laja lake. Call this
function c((.;h;), with c/(e;, L;) the current cost if e, is generated
with water in the Laja lake. Note that this function depends, in
particular, on the consumption forecast.

On the other hand, function A is the outcome of a dynamic
optimization with one state variable, ¢. At the end of month T, the
level of lake Laja, ¢, must be between 1310 m.o.s.l and 1368 m.o.s.1.
For each level £€{1310, 1311,..., 1368} the option value of water at
the end of the planning horizon is computed.!® This computation
yields a function whose value evaluated at ¢ we will denote by
J2(€).° Function Ar is decreasing in £—the more water in the
reservoir, the lower its option value.

17 The value of water is the derivative of the standard Bellman equation.

18 Note that there are 59 possible levels.

19 This function is obtained from suitably extending the optimization n periods
into the future, assuming that the option value of water is 0 in month T+n and
working the solution backwards.

Now let ¢7_; be the level of lake Laja at the end of month T—-1,
a; be the inflow of water into the reservoir when the hidrology is h;
and let er be the extraction of water during month T. Then the
level of lake Laja at the end of month T is

tr =4¢r_1 +aj—er.

Because a one-to-one function relates a; with h;, we can write
tr_1 +a; — er = L(er; tr_1, ).

Thus the option value of water at the end of month T if the
hydrology is h; and er is extracted is Ar|¢r{er;¢r_1, hj)|—variables

affect the option value of water only through the state variable ¢.
Now for each pair (h;, £1_1) there exists e*1{(¢r_4, h;) such that

Arler(ef; tr_1,hy)) = cr(ef; Lr)

(where we have omitted the arguments in e*r). Therefore, the
option value of water at T is

Arler(ed; er_1,hy)).

Now one can build two matrices: [Erfr_y, h;)], which sum-
marizes the energy generated with water in the Laja lake for each
level-hydrology pair; and [A7{¢r_1, hj)], which summarizes the
option value of water at the optimum for each level-hydrology
pair. Each matrix is of order 59 x 40. Also, one can calculate the
average option value of water for each level at the end of month T,
which is equal to

_ 1 40
Ar(tro1) = g5 > Arler(es o1, ),
j=1

Note that Z;_; is decreasing in ¢ because each Ar_;(.h;) is
decreasing in ¢. Note also that A7 is a function of the state variable
¢r—1 only. Hence one can define

Ar-1(br-1) = Ar(€r-1),

Now the optimization for months 1, 2,..., T-1 can be done
applying backwards induction exactly in the same fashion, by
solving

Aroallr(€f_q; troa, b)) = cr_a(ef_q; Lro1)

and so on. The result is a sequence of matrices
([Ede—1, W21 and ([ALt—1, h)])L 1. These matrices are used
later for simulating the system’s operation.

Example: Assume four lake levels and three hydrologies. The
energy matrix in month t is

ef(1,1) ef1,2) ef1,3)
ef2,1) €f2,2) €f2,3)
ef(3,1) €f(3,2) €f3.,3)|’
ef4,1) ef4,2) ef4,3)

Ee(€e_1, h) =

where e*(1,2) is the optimal energy to be generated with water of
the reservoir during month t if the level of lake Laja is ¢; and the
hydrology h,. The second matrix is

(1,1 4(1,2) 4(1,3)
A2,1) A(2,2) A(2,3)
(3, 1) 4:(3,2) 4(3,3)
A4, 1) A(4,2) A(4,3)

At(fr—l»h) =

Notice that both, hydrologies and lake levels are independent of t.
Finally, the average option value of water, as function of level ¢; is

_ 13
Aalin) = Zellia) =33 Adlli, hy).
j=1

Stage 2: Simulation The sequence (E[«{(¢—1,h)]);=; tells how
much water to use each month for any possible level, hydrology
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pair. Thus, given the initial level of lake Laja, £y, and a sequence of
hydrologies (h,);_ ; one can simulate the operation of the system
from the first to the last month computing, among others,
monthly spot prices, quantities and deficits, this for each of the
five demand blocks. To obtain a probability distribution of
monthly spot prices, quantities and deficits one chooses randomly
1000 sequences (ho)_ 1 and simulates each sequence.
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